Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1293264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074316

RESUMO

Thermal stress alters the transcriptome and subsequent tissue physiology of poultry; thus, it can negatively impact poultry production through reduced meat quality, egg production, and health and wellbeing. The modulation of gene expression is critical to embryonic development and cell proliferation, and growing evidence suggests the role of non-coding RNAs (RNA:RNA interaction) in response to thermal stress in animals. MicroRNAs (miRNAs) comprise a class of small regulatory RNAs that modulate gene expression through posttranscriptional interactions and regulate mRNAs, potentially altering numerous cellular processes. This study was designed to identify and characterize the differential expression of miRNAs in satellite cells (SCs) from the turkey pectoralis major muscle and predict important miRNA:mRNA interactions in these developing SCs under a thermal challenge. Small RNA sequencing was performed on RNA libraries prepared from SCs cultured from 1-week-old male Nicholas commercial turkeys (NCTs) and non-selected Randombred Control Line 2 turkeys during proliferation and differentiation at the control temperature (38°C) or under a thermal challenge (33°C or 43°C). A total of 353 miRNAs (161 known and 192 novel) were detected across the sequenced libraries. Expression analysis found fewer differentially expressed miRNAs in the SCs of NCT birds, suggesting that the miRNA response to heat stress has been altered in birds selected for their modern commercial growth traits. Differentially expressed miRNAs, including those with described roles in muscle development, were detected both among temperature treatments and between genetic lines. A prominent differential expression of miR-206 was found in proliferating turkey SCs with a significant response to thermal challenges in both lines. In differentiating SCs, isoforms of miR-1 had significant differential responses, with the expression of miR-206 being mainly affected only by cold treatment. Target gene predictions and Gene Ontology analysis suggest that the differential expression of miRNAs during thermal stress could significantly affect cellular proliferation and differentiation.

2.
Front Physiol ; 14: 1275922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074318

RESUMO

Artificial insemination is a standard practice in the turkey breeder industry to ensure the production of fertile eggs. Even though hens are inseminated on a weekly basis, their fertility tends to decline after a few weeks of production. Avian species have a specialized structures called sperm storage tubules (SSTs), located in the uterovaginal junction (UVJ) of the oviduct. The ability of SSTs to store sperm is directly correlated with the fertility of the hen. The objective of the study was to examine changes in the transcriptome of the turkey hen's UVJ in response to the presence of sperm at three key stages of production. We hypothesized that repeated and prolonged exposure to sperm would alter the transcriptome of the UVJ. Samples were collected from virgin hens prior to the onset of lay, as well as from sham-inseminated (extender only) and semen-inseminated hens at early lay, peak lay, and late lay. Gene expression profiling of the UVJ was examined, and a differential expression analysis was conducted through pairwise comparisons between semen- and sham-inseminated groups at each production stage and across production stages. In the early laying stage, no significant gene expression changes were found between semen- and sham-inseminated groups. However, at peak lay, genes related to lipid biosynthesis, Wnt signaling, cell proliferation, and O-glycan biosynthesis were upregulated in the semen group, while the immune response and cytokine-cytokine receptor interaction were downregulated. In the late lay stage, the transcription pathway was upregulated in the semen group, whereas the translation pathway was downregulated. The local immune response that was suppressed during peak lay was increased at the late laying stage. In the semen-inseminated group, the UVJ exhibited advanced aging at the late laying stage, evidenced by reduced telomere maintenance and translation processes. The results from this study provide valuable insights into the alteration of the UVJ function in response to the presence of sperm at different stages of production and throughout the production cycle. Targeting the modulation of local immune response and addressing aging processes after peak production could potentially prevent or delay the decline in fertility of turkey breeder hens.

3.
PLoS One ; 18(2): e0281350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735684

RESUMO

Satellite cells (SCs) comprise a heterogeneous population of muscle stem cells. Thermal stress during the first week after hatch alters proliferation, myogenesis, and adipogenesis of SCs of turkey pectoralis major (p. major) muscle via mechanistic target of rapamycin (mTOR) and wingless-type mouse mammary tumor virus integration site family/planar cell polarity (Wnt/PCP) pathways. Pivotal genes in mTOR and Wnt/PCP pathways are mTOR and frizzled-7 (Fzd7), respectively. The objective of this study was to determine the differential effects of thermal stress on SDC4 and CD44 expression in turkey p. major muscle SCs and how the expression of SDC4 and CD44 is modulated by the mTOR and Wnt/PCP pathways. Satellite cells were isolated from the p. major muscle of 1-week-old faster-growing modern-commercial (NC) turkeys and slower-growing historic Randombred Control Line 2 (RBC2) turkeys, and were challenged with hot (43°C) and cold (33°C) thermal stress for 72 h of proliferation followed by 48 h of differentiation. The NC line SCs were found to contain a lower proportion of SDC4 positive and CD44 negative (SDC4+CD44-) cells and a greater proportion of SDC4 negative and CD44 positive (SDC4-CD44+) cells compared to the RBC2 line at the control temperature (38°C) at both 72 h of proliferation and 48 h of differentiation. In general, at 72 h of proliferation, the proportion of SDC4+CD44- cells decreased with heat stress (43°C) and increased with cold stress (33°C) relative to the control temperature (38°C) in both lines, whereas the proportion of SDC4-CD44+ cells increased with heat stress and decreased with cold stress. In general, the expression of SDC4 and CD44 in the NC SCs showed greater response to both hot and cold thermal stress compared to the RBC2 cells. Knockdown of mTOR or Fzd7 expression increased the proportion of SDC4+CD44- cells while the proportion of SDC4-CD44+ cells decreased during differentiation with line differences being specific to treatment temperatures. Thus, differential composition of p. major muscle SCs in growth-selected commercial turkey may be resulted, in part, from the alteration in SDC4 and CD44 expression. Results indicate differential temperature sensitivity and mTOR and Wnt/PCP pathway responses of growth-selected SC populations and this may have long-lasting effect on muscle development and growth.


Assuntos
Células Satélites de Músculo Esquelético , Perus , Animais , Polaridade Celular , Músculos Peitorais/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , Temperatura , Serina-Treonina Quinases TOR/metabolismo , Receptores de Hialuronatos/metabolismo
4.
Genes (Basel) ; 13(10)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36292741

RESUMO

Early muscle development involves the proliferation and differentiation of stem cells (satellite cells, SCs) in the mesoderm to form multinucleated myotubes that mature into muscle fibers and fiber bundles. Proliferation of SCs increases the number of cells available for muscle formation while simultaneously maintaining a population of cells for future response. Differentiation dramatically changes properties of the SCs and environmental stressors can have long lasting effects on muscle growth and physiology. This study was designed to characterize transcriptional changes induced in turkey SCs undergoing differentiation under thermal challenge. Satellite cells from the pectoralis major (p. major) muscle of 1-wk old commercial fast-growing birds (Nicholas turkey, NCT) and from a slower-growing research line (Randombred Control Line 2, RBC2) were proliferated for 72 h at 38 °C and then differentiated for 48 h at 33 °C (cold), 43 °C (hot) or 38 °C (control). Gene expression among thermal treatments and between turkey lines was examined by RNAseq to detect significant differentially expressed genes (DEGs). Cold treatment resulted in significant gene expression changes in the SCs from both turkey lines, with the primary effect being down regulation of the DEGs with overrepresentation of genes involved in regulation of skeletal muscle tissue regeneration and sarcomere organization. Heat stress increased expression of genes reported to regulate myoblast differentiation and survival and to promote cell adhesion particularly in the NCT line. Results suggest that growth selection in turkeys has altered the developmental potential of SCs in commercial birds to increase hypertrophic potential of the p. major muscle and sarcomere assembly. The biology of SCs may account for the distinctly different outcomes in response to thermal challenge on breast muscle growth, development, and structure of the turkey.


Assuntos
Células Satélites de Músculo Esquelético , Perus , Animais , Perus/genética , Células Satélites de Músculo Esquelético/metabolismo , Transcriptoma , Músculos Peitorais/metabolismo , Desenvolvimento Muscular/genética
5.
Front Physiol ; 13: 970243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091406

RESUMO

Thermal stress poses a threat to agricultural systems through increased risk to animal growth, health, and production. Exposure of poultry, especially hatchlings, to extreme temperatures can seriously affect muscle development and thus compromise subsequent meat quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells (SCs) cultured from commercial birds under thermal challenge to determine the applicability of previous results obtained for select research lines. Satellite cells isolated from the pectoralis major muscle of 1-week old commercial fast-growing birds (Nicholas turkey, NCT) and from a slower-growing research line (RBC2) were proliferated in culture at 38°C or 43°C for 72 h. RNAseq analysis found statistically significant differences in gene expression among treatments and between turkey lines with a greater number of genes altered in the NCT SCs suggesting early myogenesis. Pathway analysis identified cell signaling and regulation of Ca2+ as important responses. Expression of the intercellular signaling Wnt genes, particularly Wnt5a and 7a was significantly altered by temperature with differential response between lines. The peripheral calcium channel RYR3 gene was among the genes most highly upregulated by heat stress. Increased expression of RYR3 would likely result in higher resting cytosolic calcium levels and increased overall gene transcription. Although responses in the calcium signaling pathway were similar among the RBC2 and NCT lines, the magnitude of expression changes was greater in the commercially selected birds. These results provide evidence into how SC activity, cellular fate, and ultimately muscle development are altered by heat stress and commercial selection.

6.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908789

RESUMO

Satellite cells (SCs) are multipotential stem cells having the plasticity to convert to an adipogenic lineage in response to thermal stress during the period of peak mitotic activity (the first week after hatch in poultry). The mechanistic target of rapamycin (mTOR) pathway, which regulates cellular function and fate of SCs, is greatly altered by thermal stress in turkey pectoralis major muscle SCs. The objective of the present study was to determine the effects of thermal stress, selection for growth, and the role of the mTOR pathway on SC intracellular lipid accumulation and expression of adipogenic regulatory genes. These effects were analyzed using SCs isolated from the pectoralis major muscle of 1-wk-old modern faster-growing commercial turkey line (NC) selected for increased growth and breast muscle yield as compared with SCs of a historic slower-growing Randombred Control Line 2 (RBC2) turkey. Heat stress (43 °C) of SCs during proliferation increased intracellular lipid accumulation (P < 0.001), whereas cold stress (33 °C) showed an inhibitory effect (P < 0.001) in both lines. Knockdown of mTOR reduced the intracellular lipid accumulation (P < 0.001) and suppressed the expression of several adipogenic regulatory genes: peroxisome proliferator-activated receptor-γ (PPARγ; P < 0.001), CCAAT/enhancer-binding protein-ß (C/EBPß; P < 0.001), and neuropeptide-Y (NPY; P < 0.001) during both proliferation and differentiation. The NC line SCs showed fewer reductions in lipid accumulation compared with the RBC2 line independent of temperature. Both intracellular lipid accumulation (P < 0.001) and PPARγ expression (P < 0.001) were greater at 72 h of proliferation than at 48 h of differentiation in both the RBC2 and NC lines independent of temperature. Thus, hot and cold thermal stress affected intracellular lipid accumulation in the pectoralis major muscle SCs, in part, through the mTOR pathway in wea growth-dependent manner. Altered intracellular lipid accumulation could eventually affect intramuscular fat deposition, resulting in a long-lasting effect on the structure and protein to fat ratio of the poultry pectoralis major muscle.


Turkey breast muscle growth and development are sensitive to temperatures immediately after hatch due to an immature thermoregulatory system. Meat yield or quality problems may arise from external thermal stress during this period. Modern commercial turkeys are selected for increased growth and breast muscle yield. However, with excessive enlargement of muscle fibers, there are increased incidences of muscle damage and fat deposition in the breast muscle. The breast meat can be downgraded due to the meat quality problems. Satellite cells (SCs) are the only source of cells responsible for post-hatch muscle growth in poultry, and they are sensitive to temperature. This study identifies the cellular mechanisms in regulating thermal stress-induced fat synthesis in turkey breast muscle SCs. The results of the current study provide insight into how thermal stress and selection for rapid growth affect the fat content in SCs. These results have potential application in the development of temperature manipulation strategies to control fat production by SCs, which will impact poultry breast meat quality.


Assuntos
Células Satélites de Músculo Esquelético , Animais , Expressão Gênica , Lipídeos , PPAR gama/genética , Células Satélites de Músculo Esquelético/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Perus/genética
7.
Front Physiol ; 13: 892887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677087

RESUMO

Satellite cells (SCs) are a heterogeneous population of multipotential stem cells. During the first week after hatch, satellite cell function and fate are sensitive to temperature. Wingless-type mouse mammary tumor virus integration site family/planar cell polarity (Wnt/PCP) signaling pathway is significantly affected by thermal stress in turkey pectoralis major (p. major) muscle SCs. This pathway regulates the activity of SCs through a frizzled-7 (Fzd7) cell surface receptor and two intracellular effectors, rho-associated protein kinase (ROCK) and c-Jun. The objective of the present study was to determine the effects of thermal stress, growth selection, and the Fzd7-mediated Wnt/PCP pathway on proliferation, myogenic differentiation, lipid accumulation, and expression of myogenic and adipogenic regulatory genes. These effects were evaluated in SCs isolated from the p. major muscle of 1-week faster-growing modern commercial (NC) line of turkeys as compared to SCs of a slower-growing historic Randombred Control Line 2 (RBC2) turkey line. Heat stress (43°C) increased phosphorylation of both ROCK and c-Jun with greater increases observed in the RBC2 line. Cold stress (33°C) had an inhibitory effect on both ROCK and c-Jun phosphorylation with the NC line showing greater reductions. Knockdown of the expression of Fzd7 decreased proliferation, differentiation, and expression of myogenic regulatory genes: myoblast determination factor-1 and myogenin in both lines. Both lipid accumulation and expression of adipogenic regulatory genes: peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-ß, and neuropeptide-Y were suppressed with the Fzd7 knockdown. The RBC2 line was more dependent on the Fzd7-mediated Wnt/PCP pathway for proliferation, differentiation, and lipid accumulation compared to the NC line. Thus, thermal stress may affect poultry breast muscle growth potential and protein to fat ratio by altering function and fate of SCs through the Fzd7-mediated Wnt/PCP pathway in a growth-dependent manner.

8.
PLoS One ; 17(1): e0262576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025965

RESUMO

Satellite cells (SCs) are stem cells responsible for post-hatch muscle growth through hypertrophy and in birds are sensitive to thermal stress during the first week after hatch. The mechanistic target of rapamycin (mTOR) signaling pathway, which is highly responsive to thermal stress in differentiating turkey pectoralis major (p. major) muscle SCs, regulates protein synthesis and the activities of SCs through a downstream effector, S6 kinase (S6K). The objectives of this study were: 1) to determine the effect of heat (43°C) and cold (33°C) stress on activity of the mTOR/S6K pathway in SCs isolated from the p. major muscle of one-week-old faster-growing modern commercial (NC) turkeys compared to those from slower-growing Randombred Control Line 2 (RBC2) turkeys, and 2) to assess the effect of mTOR knockdown on the proliferation, differentiation, and expression of myogenic regulatory factors of the SCs. Heat stress increased phosphorylation of both mTOR and S6K in both turkey lines, with greater increases observed in the RBC2 line. With cold stress, greater reductions in mTOR and S6K phosphorylation were observed in the NC line. Early knockdown of mTOR decreased proliferation, differentiation, and expression of myoblast determination protein 1 and myogenin in both lines independent of temperature, with the RBC2 line showing greater reductions in proliferation and differentiation than the NC line at 38° and 43°C. Proliferating SCs are more dependent on mTOR/S6K-mediated regulation than differentiating SCs. Thus, thermal stress can affect breast muscle hypertrophic potential by changing satellite cell proliferation and differentiation, in part, through the mTOR/S6K pathway in a growth-dependent manner. These changes may result in irreversible effects on the development and growth of the turkey p. major muscle.


Assuntos
Resposta ao Choque Térmico/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Perus/crescimento & desenvolvimento , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Resposta ao Choque Frio/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína MyoD/metabolismo , Miogenina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Temperatura , Perus/metabolismo
9.
Front Physiol ; 12: 732208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512399

RESUMO

Precise regulation of gene expression is critical for normal muscle growth and development. Changes in gene expression patterns caused by external stressors such as temperature can have dramatic effects including altered cellular structure and function. Understanding the cellular mechanisms that underlie muscle growth and development and how these are altered by external stressors are crucial in maintaining and improving meat quality. This study investigated circular RNAs (circRNAs) as an emerging aspect of gene regulation. We used data mining to identify circRNAs and characterize their expression profiles within RNAseq data collected from thermally challenged turkey poults of the RBC2 and F-lines. From sequences of 28 paired-end libraries, 8924 unique circRNAs were predicted of which 1629 were common to all treatment groups. Expression analysis identified significant differentially expressed circRNAs (DECs) in comparisons between thermal treatments (41 DECs) and between genetic lines (117 DECs). No intersection was observed between the DECs and differentially expressed gene transcripts indicating that the DECs are not simply the result of expression changes in the parental genes. Comparative analyses based on the chicken microRNA (miRNA) database suggest potential interactions between turkey circRNAs and miRNAs. Additional studies are needed to reveal the functional significance of the predicted circRNAs and their role in muscle development in response to thermal challenge. The DECs identified in this study provide an important framework for future investigation.

10.
Front Physiol ; 12: 667814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34140894

RESUMO

As multipotential stem cells, satellite cells (SCs) have the potential to express adipogenic genes resulting in lipid synthesis with thermal stress. The present study determined the effect of temperature on intracellular lipid synthesis and adipogenic gene expression in SCs isolated from the pectoralis major (p. major) muscle of 7-day-old fast-growing modern commercial (NC) turkeys compared to SCs from unselected slower-growing turkeys [Randombred Control Line 2 (RBC2)]. Since proliferating and differentiating SCs have different responses to thermal stress, three incubation strategies were used: (1) SCs proliferated at the control temperature of 38°C and differentiated at 43° or 33°C; (2) SCs proliferated at 43° or 33°C and differentiated at 38°C; or (3) SCs both proliferated and differentiated at 43°, 38°, or 33°C. During proliferation, lipid accumulation increased at 43°C and decreased at 33°C with the NC line showing greater variation than the RBC2 line. During proliferation at 43°C, peroxisome proliferator-activated receptor-γ (PPARγ) and neuropeptide-Y (NPY) expression was reduced to a greater extent in the NC line than the RBC2 line. At 33°C, expression of PPARγ, NPY, and CCAAT/enhancer-binding protein-ß (C/EBPß) was upregulated, but only in the RBC2 line. During differentiation, both lines showed greater changes in lipid accumulation and in C/EBPß and NPY expression if the thermal challenge was initiated during proliferation. These data suggest that adipogenic gene expression is more responsive to thermal challenge in proliferating SCs than in differentiating SCs, and that growth-selection has increased temperature sensitivity of SCs, which may significantly affect breast muscle structure and composition.

11.
Immunogenetics ; 73(5): 405-417, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33978784

RESUMO

We performed a meta-analysis of the newly assembled Komodo dragon (Varanus komodoensis) genome to characterize the major histocompatibility complex (MHC) of the species. The MHC gene clusters of the Komodo dragon are gene dense, complex, and contain counterparts of many genes of the human MHC. Our analysis identified 20 contigs encompassing ~ 6.9 Mbp of sequence with 223 annotated genes of which many are predicted orthologs to the genes of the human MHC. These MHC contigs range in size from 13.2 kb to 21.5 Mbp, contain an average of one gene per 30 kb, and are thought to occur on at least two chromosomes. Eight contigs, each > 100 kb, could be aligned to the human MHC based on gene content, and these represent gene clusters found in each of the recognized mammalian MHC subregions. The MHC of the Komodo dragon shares organizational features of other non-mammalian taxa. Multiple class Iα and class IIß genes are indicated, with linkage between classical class I and immunoproteasome genes and between framework class I genes and genes associated with the mammalian class III subregion. These findings are supported in both Komodo genome assemblies and provide new insight into the MHC organization of these unique squamate reptiles.


Assuntos
Lagartos/genética , Complexo Principal de Histocompatibilidade/genética , Animais , Genoma , Humanos , Família Multigênica
12.
Artigo em Inglês | MEDLINE | ID: mdl-33148517

RESUMO

Satellite cell (SCs), the main progenitors for post-hatch poultry muscle growth, has maximal mitotic activity and sensitivity to temperature during the first week after hatch. The objective of the present study was to determine the effect of hot and cold temperatures on the proliferation and differentiation of SCs from pectoralis major (P. major) muscle of fast-growing 1-week-old Nicholas commercial (NC) turkeys compared to Randombred Control Line 2 (RBC2) turkeys representing commercial turkeys from 1966. Three temperature regimens were used: SCs proliferation at 38 °C (control) with differentiation at 43° or 33 °C; proliferation at 43° or 33 °C with differentiation at 38 °C; or both proliferation and differentiation at 43°, 38°, or 33°C. Satellite cell proliferation and differentiation increased at 43 °C and decreased at 33 °C in both lines. When a thermal challenge was administered during proliferation, greater stimulatory or suppressive effects on differentiation were observed compared to if the thermal challenge was applied only during differentiation in both lines. Expression of myoblast determination protein 1 during proliferation showed a higher increase in the NC line compared to the RBC2 line at 43 °C. Increased myogenin expression was observed in all hot treatment groups in the NC line but was only observed in the RBC2 line if the hot treatment was administered throughout proliferation and differentiation. Cold treatment suppressed myogenin expression independent of line. These results suggest turkey P. major muscle SCs are more sensitive to environmental temperatures during proliferation, and SCs from growth-selected NC turkeys are more sensitive to thermal stress compared to the RBC2 turkeys.


Assuntos
Diferenciação Celular , Proliferação de Células , Temperatura Baixa , Temperatura Alta , Músculos Peitorais/citologia , Animais , Reprodutibilidade dos Testes , Células Satélites de Músculo Esquelético/citologia , Perus/fisiologia
13.
Front Physiol ; 11: 1036, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922311

RESUMO

Death-associated protein (DAP) undergoes substantial changes in expression during turkey skeletal muscle development, decreasing from the 18 day embryonic stage to 1 day posthatch, and again from 1 day posthatch to 16 weeks of age. These changes suggest that DAP plays an important role at critical stages of the developmental process. The objective of this study was to elucidate the role of DAP in muscle development by examining the effect of reduced DAP expression on global gene expression in proliferating and differentiating turkey pectoralis major muscle satellite cells. Small interfering RNA was used to knock down expression of DAP and the transcriptome was subsequently profiled using a turkey skeletal muscle long oligonucleotide microarray. Microarray data were corroborated using quantitative real-time PCR. In proliferating cells, 458 loci, resulting in 378 uniquely annotated genes, showed differential expression (false discovery rate, FDR < 0.05). Pathway analysis highlighted altered eukaryotic translational initiation factors (eIFs) signaling, protein ubiquitination, sirtuin signaling, and mechanistic target of rapamycin (mTOR) signaling as the primary pathways affected in the knockdown proliferating cells. The findings underpinned the potential DAP involvement in cell proliferation of turkey satellite cells through the coordination between protein synthesis and cell cycle. In differentiating cells, 270 loci, accounting for 189 unique genes, showed differential expression (FDR < 0.05). Decreased expression of genes encoding various myofibrillar proteins and proteins involved in sarcoplasmic reticulum calcium flux suggests that DAP may affect regulation of calcium homeostasis and cytoskeleton signaling. This study provides the first evidence that reduced expression of DAP significantly alters the transcriptome profile of pectoralis major muscle satellite cells, thereby reducing proliferation and differentiation.

14.
PLoS One ; 15(5): e0232160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379770

RESUMO

There is interest in supplementing animals and humans with selenium (Se) above Se-adequate levels, but the only good biomarker for toxicity is tissue Se. We targeted liver because turkeys fed 5 µg Se/g have hepatic Se concentrations 6-fold above Se-adequate (0.4 µg Se/g) levels without effects on growth or health. Our objectives were (i) to identify transcript biomarkers for high Se status, which in turn would (ii) suggest proteins and pathways used by animals to adapt to high Se. Turkey poults were fed 0, 0.025, 0.4, 0.75 and 1.0 µg Se/g diet in experiment 1, and fed 0.4, 2.0 and 5.0 µg Se/g in experiment 2, as selenite, and the full liver transcriptome determined by RNA-Seq. The major effect of Se-deficiency was to down-regulate expression of a subset of selenoprotein transcripts, with little significant effect on general transcript expression. In response to high Se intake (2 and 5 µg Se/g) relative to Se-adequate turkeys, there were only a limited number of significant differentially expressed transcripts, all with only relatively small fold-changes. No transcript showed a consistent pattern of altered expression in response to high Se intakes across the 1, 2 and 5 µg Se/g treatments, and there were no associated metabolic pathways and biological functions that were significant and consistently found with high Se supplementation. Gene set enrichment analysis also found no gene sets that were consistently altered by high-Se and supernutritional-Se. A comparison of differentially expressed transcript sets with high Se transcript sets identified in mice provided high Se (~3 µg Se/g) also failed to identify common differentially expressed transcript sets between these two species. Collectively, this study indicates that turkeys do not alter gene expression in the liver as a homeostatic mechanism to adapt to high Se.


Assuntos
Selênio/metabolismo , Transcriptoma/efeitos dos fármacos , Perus/metabolismo , Animais , Biomarcadores/metabolismo , Dieta , Suplementos Nutricionais/toxicidade , Glutationa Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Estado Nutricional , RNA Mensageiro/genética , Selenocisteína/genética , Selenoproteínas/genética , Selenoproteínas/metabolismo , Transcriptoma/genética , Perus/genética
15.
Biology (Basel) ; 8(4)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766267

RESUMO

Uncharacterized protein STY1099, encoded by the yccT gene, was previously identified as the most altered (i.e., upregulated) protein among the ZnO nanoparticle (NP) stimulon of Salmonella enterica serovar Enteritidis. Here we combined various stress response-related assays with functional genetics, global transcriptomic and proteomic analyses to characterize the yccT gene and its STY1099 product. Exposure of S. enterica Enteritidis to H2O2 (i.e., hydrogen peroxide) resulted in a significant (p < 0.0001) upregulation of the yccT gene, whereas exposure to paraquat (i.e., superoxide) did not alter the expression of the yccT gene. The ∆yccT mutant of S. enterica Enteritidis exposed to 0.75 mM H2O2, showed significantly reduced (p < 0.05) viability compared to the wild type strain. Further, comparative transcriptome analyses supported by Co-immunoprecipitation (Co-IP) assay revealed that STY1099 protein plays a role in redox homeostasis during the peroxide stress assault via involvement in the processes of respiratory nitrate reductase, oxidoreductase activities, cellular uptake and stress response. In addition, we found that the STY1099 protein has the monopolar subcellular location and that it interacts with key cell division proteins, MinD, and FtsH, as well as with a rod shape-determining protein MerB.

16.
mBio ; 10(5)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615957

RESUMO

The microbiome is important to all animals, including poultry, playing a critical role in health and performance. Low-dose antibiotics have historically been used to modulate food production animals and their microbiome. Identifying alternatives to antibiotics conferring similar modulatory properties has been elusive. The purpose of this study was to determine if a host-tailored probiotic could recapitulate effects of a low-dose antibiotic on host response and the developing microbiome. Over 13 days of life, turkey poults were supplemented continuously with a low-dose antibiotic or oral supplementation of a prebiotic with or without two different probiotics (8 cage units, n = 80 per group). Gastrointestinal bacterial and fungal communities of poults were characterized by 16S rRNA gene and ITS2 amplicon sequencing. Localized and systemic host gene expression was assessed using transcriptome sequencing (RNA-Seq), kinase activity was assessed by avian-specific kinome peptide arrays, and performance parameters were assessed. We found that development of the early-life microbiome of turkey poults was tightly ordered in a tissue- and time-specific manner. Low-dose antibiotic and turkey-tailored probiotic supplementation, but not nontailored probiotic supplementation, elicited similar shifts in overall microbiome composition during development compared to controls. Treatment-induced bacterial changes were accompanied by parallel shifts in the fungal community and host gene expression and enhanced performance metrics. These results were validated in pen trials that identified further additive effects of the turkey-tailored probiotic combined with different prebiotics. Alternative approaches to low-dose antibiotic use in poultry are feasible and can be optimized utilizing the indigenous poultry microbiome. Similar approaches may also be beneficial for humans.IMPORTANCE Alternative approaches are greatly needed to reduce the need for antibiotic use in food animal production. This study utilized a pipeline for the development of a host-tailored probiotic to enhance performance in commercial turkeys and modulate their microbiota, similar to the effects of low-dose antibiotic administration. We determined that a host-tailored probiotic, developed in the context of the commercial turkey gut microbiome, was more effective at modulating these parameters than a nontailored probiotic cocktail. Furthermore, the host-tailored probiotic mimicked many of the effects of a low-dose antibiotic growth promoter. Surprisingly, the effects of the antibiotic growth promoter and host-tailored probiotic were observed across kingdoms, illustrating the coordinated interkingdom effects of these approaches. This work suggests that tailored approaches to probiotic development hold promise for modulating the avian host and its microbiota.


Assuntos
Antibacterianos/farmacologia , Probióticos , Animais , Microbiota/efeitos dos fármacos , Micobioma/efeitos dos fármacos , RNA Ribossômico 16S/genética , Perus
17.
Toxins (Basel) ; 11(5)2019 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-31035349

RESUMO

Susceptibility and/or resistance to aflatoxin B1 (AFB1) is a threshold trait governed principally by glutathione S transferase (GST)-mediated detoxification. In poultry, domesticated turkeys are highly sensitive to AFB1, most likely due to dysfunction in hepatic GSTs. In contrast, wild turkeys are comparatively resistant to aflatoxicosis due to the presence of functional hepatic GSTAs and other possible physiological and immunological interactions. The underlying genetic basis for the disparate GST function in turkeys is unknown as are the broader molecular interactions that control the systemic response. This study quantifies the effects of dietary AFB1 on gene expression in the turkey spleen, specifically contrasting genetically distinct domesticated (DT, susceptible) and Eastern wild (EW, resistant) birds. Male turkey poults were subjected to a short-term AFB1 treatment protocol with feed supplemented with 320 ppb AFB1 beginning on day 15 of age and continuing for 14 days. Spleen tissues were harvested and subjected to deep RNA sequencing and transcriptome analysis. Analysis of differential gene expression found the effects of AFB1 treatment on the spleen transcriptomes considerably more prominent in the DT birds compared to EW. However, expression of the differentially expressed genes (DEGs) was directionally biased, with the majority showing higher expression in EW (i.e., down-regulation in DT). Significantly altered pathways included FXR/RXR and LXR/RXR activation, coagulation system, prothrombin activation, acute phase response, and atherosclerosis signaling. Differential extra-hepatic expression of acute phase protein genes was confirmed by quantitative real time PCR (qRT-PCR) in the original experiment and additional turkey lines. Results demonstrate that wild turkeys possess a capacity to more effectively respond to AFB1 exposure.


Assuntos
Aflatoxina B1/toxicidade , Baço/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Ração Animal , Animais , Animais Domésticos , Animais Selvagens , Resistência à Doença , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Micotoxicose/genética , Baço/metabolismo , Perus
18.
Toxins (Basel) ; 11(1)2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669283

RESUMO

The nearly-ubiquitous food and feed-borne mycotoxin aflatoxin B1 (AFB1) is carcinogenic and mutagenic, posing a food safety threat to humans and animals. One of the most susceptible animal species known and thus a good model for characterizing toxicological pathways, is the domesticated turkey (DT), a condition likely due, at least in part, to deficient hepatic AFB1-detoxifying alpha-class glutathione S-transferases (GSTAs). Conversely, wild turkeys (Eastern wild, EW) are relatively resistant to the hepatotoxic, hepatocarcinogenic and immunosuppressive effects of AFB1 owing to functional gene expression and presence of functional hepatic GSTAs. This study was designed to compare the responses in gene expression in the gastrointestinal tract between DT (susceptible phenotype) and EW (resistant phenotype) following dietary AFB1 challenge (320 ppb for 14 days); specifically in cecal tonsil which functions in both nutrient absorption and gut immunity. RNAseq and gene expression analysis revealed significant differential gene expression in AFB1-treated animals compared to control-fed domestic and wild birds and in within-treatment comparisons between bird types. Significantly upregulated expression of the primary hepatic AFB1-activating P450 (CYP1A5) as well as transcriptional changes in tight junction proteins were observed in AFB1-treated birds. Numerous pro-inflammatory cytokines, TGF-ß and EGF were significantly down regulated by AFB1 treatment in DT birds and pathway analysis suggested suppression of enteroendocrine cells. Conversely, AFB1 treatment modified significantly fewer unique genes in EW birds; among these were genes involved in lipid synthesis and metabolism and immune response. This is the first investigation of the effects of AFB1 on the turkey gastro-intestinal tract. Results suggest that in addition to the hepatic transcriptome, animal resistance to this mycotoxin occurs in organ systems outside the liver, specifically as a refractory gastrointestinal tract.


Assuntos
Aflatoxina B1/toxicidade , Animais Domésticos/genética , Trato Gastrointestinal/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Perus/genética , Animais , Trato Gastrointestinal/metabolismo , Glutationa Transferase/genética , Isoenzimas/genética , Masculino
19.
Poult Sci ; 98(1): 74-91, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239949

RESUMO

Extremes in temperature represent environmental stressors that impact the well-being and economic value of poultry. As homeotherms, young poultry with immature thermoregulatory systems are especially susceptible to thermal extremes. Genetic variation and differences in gene expression resulting from selection for production traits, likely contribute to thermal stress response. This study was designed to investigate in vivo transcriptional changes in the breast muscle of young turkey poults from an unselected randombred line and one selected for 16 wk body weight under hot and cold thermal challenge. Newly hatched turkey poults were brooded for 3 d at one of 3 temperatures: control (35°C), cold (31°C), or hot (39°C). Samples of the pectoralis major were harvested and subjected to deep RNA sequencing. Significant differential gene expression was observed in both growth-selected and randombred birds at both temperature extremes when compared to control-brooded poults. Growth-selected birds responded to thermal stress through changes in genes predicted to have downstream transcriptional effects and that would result in reduced muscle growth. Slower growing randombred birds responded to thermal stress through modulation of lipid-related genes, suggesting reduction in lipid storage, transport, and synthesis, consistent with changes in energy metabolism required to maintain body temperature.


Assuntos
Músculos Peitorais/metabolismo , Temperatura , Perus/fisiologia , Animais , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Masculino , Análise de Sequência de RNA , Estresse Fisiológico/genética , Perus/genética , Perus/crescimento & desenvolvimento
20.
Toxins (Basel) ; 10(1)2018 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-29342849

RESUMO

The food-borne mycotoxin aflatoxin B1 (AFB1) poses a significant risk to poultry, which are highly susceptible to its hepatotoxic effects. Domesticated turkeys (Meleagris gallopavo) are especially sensitive, whereas wild turkeys (M. g. silvestris) are more resistant. AFB1 toxicity entails bioactivation by hepatic cytochrome P450s to the electrophilic exo-AFB1-8,9-epoxide (AFBO). Domesticated turkeys lack functional hepatic GST-mediated detoxification of AFBO, and this is largely responsible for the differences in resistance between turkey types. This study was designed to characterize transcriptional changes induced in turkey livers by AFB1, and to contrast the response of domesticated (susceptible) and wild (more resistant) birds. Gene expression responses to AFB1 were examined using RNA-sequencing. Statistically significant differences in gene expression were observed among treatment groups and between turkey types. Expression analysis identified 4621 genes with significant differential expression (DE) in AFB1-treated birds compared to controls. Characterization of DE transcripts revealed genes dis-regulated in response to toxic insult with significant association of Phase I and Phase II genes and others important in cellular regulation, modulation of apoptosis, and inflammatory responses. Constitutive expression of GSTA3 was significantly higher in wild birds and was significantly higher in AFB1-treated birds when compared to controls for both genetic groups. This pattern was also observed by qRT-PCR in other wild and domesticated turkey strains. Results of this study emphasize the differential response of these genetically distinct birds, and identify genes and pathways that are differentially altered in aflatoxicosis.


Assuntos
Aflatoxina B1/toxicidade , Fígado/efeitos dos fármacos , Perus/genética , Animais , Fígado/metabolismo , Masculino , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...